A COMPARATIVE STUDY OF PHRAGMITES CONTROL MEASURES

Alan M. Young

May 2012
Phragmites australis
the Common Reed

-- invasive species
-- introduced from Europe
-- out-competes native salt marsh vegetation
Pickman Park Salt Marsh Study Site

SSU Central Campus

Salem Harbor

SSU South Campus

Pickman River

Forest River

Study Site
Aerial Photo c 1990’s
Pickman Park Marsh
two wall openings
1st trench
November 2002

June 2003
Pickman Park Marsh c 2005
three *Phragmites* stands
Reference Stand (R)
Treatments

• Cutting only
 – Weekly / biweekly during 3 growing seasons

• Cutting plus herbicide
 – Weekly / biweekly during 3 growing seasons

• Excavation to increase seawater inundation
 – Extend trench & reduce marsh elevation
 (2007)
Effectiveness of Treatment

• Comparison of mean height of 20 of the tallest stalks within a stand

 – 2006 -- baseline prior to study

 – 2011 -- 2 years after cutting / herbicide treatments ended in 2009
 -- 4 years after excavation in 2007
Phragmites Reference stand

2006

2010
Phragmites stand at S corner of Pickman Park Salt Marsh June 2006
Treatment = weekly / biweekly cutting to ground level

June 2007
Phragmites regrowth in S corner stand -- 2010
Phragmites stand at NW corner of Pickman Park Salt Marsh
Treatment = cutting plus application of BurnOut II™
Burnout II Concentrate
Active Ingredients:
Citric Acid 11%
Clove Oil 6.5%
Sodium Laurel Sulfate 3%
Other Ingredients:
Mineral oil, Water, Lecithin
Total Other 79.5%

applied as 50:50 solution of BurnOut : vinegar (acetic acid)
Phragmites regrowth in NW corner stand -- 2010
Phragmites stand at NE corner of Pickman Park Salt Marsh June 2006
Treatment = excavation to increase salt water inundation
Excavation Equipment and Timber Mats Summer 2007
Excavation Work August 2007

September 2007
new trench
old 2002 trench
evacuated area

Pickman Park Salt Marsh 2008
Phragmites stand at NE corner of Pickman Park Salt Marsh

2006

2010
• Cutting only (during 3 growing seasons)
 – Ineffective
Conclusions

• Cutting only
 – Ineffective

• Cutting plus herbicide BurnOut II™ (during 3 growing seasons)
 – Ineffective
Conclusions

• Cutting only
 – Ineffective

• Cutting plus herbicide BurnOut II™
 – Ineffective

• Excavation to increase seawater inundation
 – Effective?
 (significant reduction in stalk height 4 years later)
Acknowledgements

• Funding provided by –
 – Gulf of Maine Council on the Marine Environment / NOAA Habitat Restoration Partnership, Habitat Restoration Grants Program

• Grant awarded to –
 – Salem Sound Coastwatch (Executive Director Barbara Warren)

• Salem State Undergraduate Student Workers
 – Mike Costello
 – James Style
 – Mike Rolo
 – Chris Cataldo
 – Tim McFarland